Why is HashSet<Point> so much slower than HashSet<string>?

41686d6564 picture 41686d6564 · Sep 10, 2017 · Viewed 10.3k times · Source

I wanted to store some pixels locations without allowing duplicates, so the first thing comes to mind is HashSet<Point> or similar classes. However this seems to be very slow compared to something like HashSet<string>.

For example, this code:

HashSet<Point> points = new HashSet<Point>();
using (Bitmap img = new Bitmap(1000, 1000))
{
    for (int x = 0; x < img.Width; x++)
    {
        for (int y = 0; y < img.Height; y++)
        {
            points.Add(new Point(x, y));
        }
    }
}

takes about 22.5 seconds.

While the following code (which is not a good choice for obvious reasons) takes only 1.6 seconds:

HashSet<string> points = new HashSet<string>();
using (Bitmap img = new Bitmap(1000, 1000))
{
    for (int x = 0; x < img.Width; x++)
    {
        for (int y = 0; y < img.Height; y++)
        {
            points.Add(x + "," + y);
        }
    }
}

So, my questions are:

  • Is there a reason for that? I checked this answer, but 22.5 sec is way more than the numbers shown in that answer.
  • Is there a better way to store points without duplicates?

Answer

Hans Passant picture Hans Passant · Sep 10, 2017

There are two perf problems induced by the Point struct. Something you can see when you add Console.WriteLine(GC.CollectionCount(0)); to the test code. You'll see that the Point test requires ~3720 collections but the string test only needs ~18 collections. Not for free. When you see a value type induce so many collections then you need to conclude "uh-oh, too much boxing".

At issue is that HashSet<T> needs an IEqualityComparer<T> to get its job done. Since you did not provide one, it needs to fall back to one returned by EqualityComparer.Default<T>(). That method can do a good job for string, it implements IEquatable. But not for Point, it is a type that harks from .NET 1.0 and never got the generics love. All it can do is use the Object methods.

The other issue is that Point.GetHashCode() does not do a stellar job in this test, too many collisions, so it hammers Object.Equals() pretty heavily. String has an excellent GetHashCode implementation.

You can solve both problems by providing the HashSet with a good comparer. Like this one:

class PointComparer : IEqualityComparer<Point> {
    public bool Equals(Point x, Point y) {
        return x.X == y.X && x.Y == y.Y;
    }

    public int GetHashCode(Point obj) {
        // Perfect hash for practical bitmaps, their width/height is never >= 65536
        return (obj.Y << 16) ^ obj.X;
    }
}

And use it:

HashSet<Point> list = new HashSet<Point>(new PointComparer());

And it is now about 150 times faster, easily beating the string test.