Looking for some sample code (C#) for a simple thread pool implementation.
I found one on codeproject, but the codebase was just huge and I don't need all that functionality.
This is more for educational purposes anyways.
This is the simplest, naive, thread-pool implementation for educational purposes I could come up with (C# / .NET 3.5). It is not using the .NET's thread pool implementation in any way.
using System;
using System.Collections.Generic;
using System.Threading;
namespace SimpleThreadPool
{
public sealed class Pool : IDisposable
{
public Pool(int size)
{
this._workers = new LinkedList<Thread>();
for (var i = 0; i < size; ++i)
{
var worker = new Thread(this.Worker) { Name = string.Concat("Worker ", i) };
worker.Start();
this._workers.AddLast(worker);
}
}
public void Dispose()
{
var waitForThreads = false;
lock (this._tasks)
{
if (!this._disposed)
{
GC.SuppressFinalize(this);
this._disallowAdd = true; // wait for all tasks to finish processing while not allowing any more new tasks
while (this._tasks.Count > 0)
{
Monitor.Wait(this._tasks);
}
this._disposed = true;
Monitor.PulseAll(this._tasks); // wake all workers (none of them will be active at this point; disposed flag will cause then to finish so that we can join them)
waitForThreads = true;
}
}
if (waitForThreads)
{
foreach (var worker in this._workers)
{
worker.Join();
}
}
}
public void QueueTask(Action task)
{
lock (this._tasks)
{
if (this._disallowAdd) { throw new InvalidOperationException("This Pool instance is in the process of being disposed, can't add anymore"); }
if (this._disposed) { throw new ObjectDisposedException("This Pool instance has already been disposed"); }
this._tasks.AddLast(task);
Monitor.PulseAll(this._tasks); // pulse because tasks count changed
}
}
private void Worker()
{
Action task = null;
while (true) // loop until threadpool is disposed
{
lock (this._tasks) // finding a task needs to be atomic
{
while (true) // wait for our turn in _workers queue and an available task
{
if (this._disposed)
{
return;
}
if (null != this._workers.First && object.ReferenceEquals(Thread.CurrentThread, this._workers.First.Value) && this._tasks.Count > 0) // we can only claim a task if its our turn (this worker thread is the first entry in _worker queue) and there is a task available
{
task = this._tasks.First.Value;
this._tasks.RemoveFirst();
this._workers.RemoveFirst();
Monitor.PulseAll(this._tasks); // pulse because current (First) worker changed (so that next available sleeping worker will pick up its task)
break; // we found a task to process, break out from the above 'while (true)' loop
}
Monitor.Wait(this._tasks); // go to sleep, either not our turn or no task to process
}
}
task(); // process the found task
lock(this._tasks)
{
this._workers.AddLast(Thread.CurrentThread);
}
task = null;
}
}
private readonly LinkedList<Thread> _workers; // queue of worker threads ready to process actions
private readonly LinkedList<Action> _tasks = new LinkedList<Action>(); // actions to be processed by worker threads
private bool _disallowAdd; // set to true when disposing queue but there are still tasks pending
private bool _disposed; // set to true when disposing queue and no more tasks are pending
}
public static class Program
{
static void Main()
{
using (var pool = new Pool(5))
{
var random = new Random();
Action<int> randomizer = (index =>
{
Console.WriteLine("{0}: Working on index {1}", Thread.CurrentThread.Name, index);
Thread.Sleep(random.Next(20, 400));
Console.WriteLine("{0}: Ending {1}", Thread.CurrentThread.Name, index);
});
for (var i = 0; i < 40; ++i)
{
var i1 = i;
pool.QueueTask(() => randomizer(i1));
}
}
}
}
}