add generic Action<T> delegates to a list

jochen picture jochen · Jul 23, 2010 · Viewed 17.9k times · Source

Is it possible to add a generic delegate Action to a List collection? I need some kind of simple messaging system for a Silverlight application.

UPDATE The following is what i realy "want"

class SomeClass<T>
{
    public T Data { get; set; }
    // and more ....
}

class App
{
    List<Action<SomeClass<T>>> _actions = new List<Action<SomeClass<T>>>();

    void Add<T>( Action<SomeClass<T>> foo )
    {
        _actions.Add( foo );
    }
}

Compiler:

The type or namespace name 'T' could not be found (are you missing a using directive or an assembly reference?)

initial code snipped class SomeClassBase { }

class SomeClass<T> : SomeClassBase
{
    public T Data { get; set; }
    // and more ....
}

class App
{
    List<Action<SomeClassBase>> _actions = new List<Action<SomeClassBase>>();

    void Add<T>( Action<SomeClass<T>> foo )
        where T : SomeClassBase
    {
        _actions.Add( foo );
    }
}

The compiler complains - for the _actions.Add() line;

Argument 1: cannot convert from 'System.Action<test.SomeClass<T>>' to 'System.Action<test.SomeClassBase>'
The best overloaded method match for 'System.Collections.Generic.List<System.Action<test.SomeClassBase>>.Add(System.Action<test.SomeClassBase>)' has some invalid arguments

From the application side there is no need for the SomeClassBase class, yet it seems impossible to define a List of Action<SomeClass<T>> elements and the approach with the base-class works when using the class in the List, instead of the Action

Thanks, jochen

Answer

Jon Skeet picture Jon Skeet · Jul 23, 2010

EDIT: Okay, now I see what you're trying to do. I've left the old answer below for posterity :)

Unfortunately you can't express the relationship you want in C# generics, but as you can make sure you're the only one manipulating the collection, you can keep it safe yourself:

Try this:

class App
{
     private readonly Dictionary<Type, object> delegateMap;

     void Add<T>(Action<SomeClass<T>> foo)
     {
         object tmp;
         if (!delegateMap.TryGetValue(typeof(T), out tmp))
         {
              tmp = new List<Action<SomeClass<T>>>();
              delegateMap[typeof(t)] = tmp;
         }
         List<Action<SomeClass<T>> list = (List<Action<SomeClass<T>>) tmp;
         list.Add(foo);
     }

     void InvokeActions<T>(SomeClass<T> item)
     {
         object tmp;
         if (delegateMap.TryGetValue(typeof(T), out tmp))
         {
             List<Action<SomeClass<T>> list = (List<Action<SomeClass<T>>) tmp;
             foreach (var action in list)
             {
                 action(item);
             }
         }
     }
}

Note that you could use the fact that delegates are multicast to just keep a Dictionary<Type, Delegate> and combine them together, but I'll leave that as an exercise for the reader :)


Old answer

It's failing for a good reason. Let's get rid of the generics (as they're irrelevant here) and think about a simpler case - fruit and bananas.

You're trying to add an Action<Banana> to a List<Action<Fruit>>. You can't do that - even with the generic variance of C# 4. Why? Because it's not safe. Consider this:

Action<Banana> peeler = banana => banana.Peel();
List<Action<Fruit>> fruitActions = new List<Action<Fruit>>();
fruitActions.Add(peeler); // Nope!
fruitActions[0].Invoke(new Strawberry());

Eek! Now we've got a banana peeler trying to peel a strawberry... what a mess!

Not that the other way round would be acceptable in C# 4:

Action<Fruit> eater = fruit => fruit.Eat();
List<Action<Banana>> bananaActions = new List<Action<Banana>>();
fruitActions.Add(eater); // Yes!
fruitActions[0].Invoke(new Banana());

Here we're adding an Action<Fruit> to a List<Action<Banana>> - that's acceptable, because anything you can do to an Action<Banana> is also valid for an Action<Fruit>.