How frequent is DateTime.Now updated ? or is there a more precise API to get the current time?

Jamie C picture Jamie C · Nov 21, 2008 · Viewed 13.9k times · Source

I have code running in a loop and it's saving state based on the current time. Sometimes this can be just milliseconds apart, but for some reason it seems that DateTime.Now will always return values of at least 10 ms apart even if it's only 2 or 3 ms later. This presents a major problem since the state i'm saving depends on the time it was saved (e.g. recording something)

My test code that returns each value 10 ms apart:

public static void Main()
{
    var dt1 = DateTime.Now;
    System.Threading.Thread.Sleep(2);
    var dt2 = DateTime.Now;

    // On my machine the values will be at least 10 ms apart
    Console.WriteLine("First: {0}, Second: {1}", dt1.Millisecond, dt2.Millisecond);
}

Is there another solution on how to get the accurate current time up to the millisecond ?

Someone suggested to look at the Stopwatch class. Although the Stopwatch class is very accurate it does not tell me the current time, something i need in order to save the state of my program.

Answer

Roman Starkov picture Roman Starkov · Feb 10, 2011

Curiously, your code works perfectly fine on my quad core under Win7, generating values exactly 2 ms apart almost every time.

So I've done a more thorough test. Here's my example output for Thread.Sleep(1). The code prints the number of ms between consecutive calls to DateTime.UtcNow in a loop:

sleep 1

Each row contains 100 characters, and thus represents 100ms of time on a "clean run". So this screen covers roughly 2 seconds. The longest preemption was 4ms; moreover, there was a period lasting around 1 second when every iteration took exactly 1 ms. That's almost real-time OS quality!1 :)

So I tried again, with Thread.Sleep(2) this time:

sleep 2

Again, almost perfect results. This time each row is 200ms long, and there's a run almost 3 seconds long where the gap was never anything other than exactly 2ms.

Naturally, the next thing to see is the actual resolution of DateTime.UtcNow on my machine. Here's a run with no sleeping at all; a . is printed if UtcNow didn't change at all:

no sleep

Finally, while investigating a strange case of timestamps being 15ms apart on the same machine that produced the above results, I've run into the following curious occurrences:

enter image description here enter image description here

There is a function in the Windows API called timeBeginPeriod, which applications can use to temporarily increase the timer frequency, so this is presumably what happened here. Detailed documentation of the timer resolution is available via the Hardware Dev Center Archive, specifically Timer-Resolution.docx (a Word file).

Conclusions:

  • DateTime.UtcNow can have a much higher resolution than 15ms
  • Thread.Sleep(1) can sleep for exactly 1ms
  • On my machine, UtcNow grows grow by exactly 1ms at a time (give or take a rounding error - Reflector shows that there's a division in UtcNow).
  • It is possible for the process to switch into a low-res mode, when everything is 15.6ms-based, and a high-res mode, with 1ms slices, on the fly.

Here's the code:

static void Main(string[] args)
{
    Console.BufferWidth = Console.WindowWidth = 100;
    Console.WindowHeight = 20;
    long lastticks = 0;
    while (true)
    {
        long diff = DateTime.UtcNow.Ticks - lastticks;
        if (diff == 0)
            Console.Write(".");
        else
            switch (diff)
            {
                case 10000: case 10001: case 10002: Console.ForegroundColor=ConsoleColor.Red; Console.Write("1"); break;
                case 20000: case 20001: case 20002: Console.ForegroundColor=ConsoleColor.Green; Console.Write("2"); break;
                case 30000: case 30001: case 30002: Console.ForegroundColor=ConsoleColor.Yellow; Console.Write("3"); break;
                default: Console.Write("[{0:0.###}]", diff / 10000.0); break;
            }
        Console.ForegroundColor = ConsoleColor.Gray;
        lastticks += diff;
    }
}

It turns out there exists an undocumented function which can alter the timer resolution. I haven't investigated the details, but I thought I'd post a link here: NtSetTimerResolution.

1Of course I made extra certain that the OS was as idle as possible, and there are four fairly powerful CPU cores at its disposal. If I load all four cores to 100% the picture changes completely, with long preemptions everywhere.