I'm only using Code Analysis for cleaning, organizing and ensuring these changes are globally performed for all instances of a particular warning. I'm down to the final, and it's CA2227.
CA2227 Collection properties should be read only Change '' to be read-only by removing the property setter.
Note this is for mapping of EDI documents. These classes are to represent a whole or part of an EDI document.
public class PO1Loop
{
public SegmentTypes.PO1LoopSegmentTypes.PO1 PO1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID1> PIDRepeat1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID2> PIDRepeat2 { get; set; }
public SegmentTypes.PO1LoopSegmentTypes.PO4 PO4 { get; set; }
/* Max Use: 8 */
public Collection<SegmentTypes.PO1LoopSegmentTypes.ACK> ACKRepeat { get; set; }
}
You can see all of the Collection properties will give me this warning, and there are hundreds of them. When using the above class I instantiate it without any data. Then externally I add the data and set each individual variable through its public accessor. I do not instantiate this class with all the data prepared and passed using a constructor method (IMO for the size these can reach it can easily wreak havoc on the eyes). When complete and all properties are assigned the class as a whole is then used to generate that part of a document it represents.
My question is, for the usage described above, what would be a better approach for setting this up correctly? Do I keep the public accessors and suppress this warning entirely, or is there a entirely different solution that would work?
Here's what MSDN says about the error, and also how you can avoid it.
Here's my take on the issue.
Consider, the following class:
class BigDataClass
{
public List<string> Data { get; set; }
}
This class will throw that exact same issue. Why? Because Collections
do not need a setter. Now, we can do anything with that object: assign Data
to an arbitrary List<string>
, add elements to Data
, remove elements from Data
, etc. If we remove the setter
, we only lose the ability to directly assign to that property.
Consider the following code:
class BigDataClass
{
private List<string> data = new List<string>();
public List<string> Data { get { return data; } } // note, we removed the setter
}
var bigData = new BigDataClass();
bigData.Data.Add("Some String");
This code is perfectly valid and in fact the recommended way to do things. Why? Because the List<string>
is a reference to a memory location, that contains the remainder of the data.
Now, the only thing you cannot now do with this, is directly set the Data
property. I.e. the following is invalid:
var bigData = new BigDataClass();
bigData.Data = new List<string>();
This is not necessarily a bad thing. You'll notice that on many .NET types this model is used. It's the basics of immutability. You usually do not want direct access to the mutability of Collections
, as this can cause some accidental behavior that has strange issues. This is why Microsoft recommends you omit setters.
Example:
var bigData = new BigDataClass();
bigData.Data.Add("Some String");
var l2 = new List<string>();
l2.Add("String 1");
l2.Add("String 2");
bigData.Data = l2;
Console.WriteLine(bigData.Data[0]);
We might be expecting Some String
, but we'll get String 1
. This also means that you cannot reliably attach events to the Collection
in question, so you cannot reliably determine if new values are added or values are removed.
A writable collection property allows a user to replace the collection with a completely different collection.
Essentially, if you only ever need to run the constructor, or assignment, once, then omit the set
modifier. You won't need it, direct assignment of collections is against best-practices.
Now, I'm not saying never use a setter on a Collection
, sometimes you may need one, but in general you should not use them.
You can always use .AddRange
, .Clone
, etc. on the Collections
, you only lose the ability of direct assignment
.
Lastly, what do we do if we wish to Serialize
or Deserialize
a class that contains our Collection
without a set
? Well, there is always more than one way to do it, the simplest (in my opinion) is to create a property
that represents the serialized collection.
Take our BigDataClass
for example. If we wished to Serialize
, and then Deserialize
this class with the following code, the Data
property would have no elements.
JavaScriptSerializer jss = new JavaScriptSerializer();
BigDataClass bdc = new BigDataClass();
bdc.Data.Add("Test String");
string serd = jss.Serialize(bdc);
Console.WriteLine(serd);
BigDataClass bdc2 = jss.Deserialize<BigDataClass>(serd);
So, to fix this, we can simply modify our BigDataClass
a bit to make it use a new string
property for Serialization
purposes.
public class BigDataClass
{
private List<string> data = new List<string>();
[ScriptIgnore]
public List<string> Data { get { return data; } } // note, we removed the setter
public string SerializedData { get { JavaScriptSerializer jss = new JavaScriptSerializer(); return jss.Serialize(data); } set { JavaScriptSerializer jss = new JavaScriptSerializer(); data = jss.Deserialize<List<string>>(value); } }
}
Another option is always the DataContractSerializer
(which is really a better option, in general.) You can find information about it on this StackOverflow question.