As we all know, String is immutable. What are the reasons for String being immutable and the introduction of StringBuilder class as mutable?
out
or ref
(since that changes the reference, not the object). A programmer therefore knows that if string x = "abc"
at the start of a method, and that doesn't change in the body of the method, then x == "abc"
at the end of the method."abc" == "ab" + "c"
. While this doesn't require immutability, the fact that a reference to such a string will always equal "abc" throughout its lifetime (which does require immutability) makes uses as keys where maintaining equality to previous values is vital, much easier to ensure correctness of (strings are indeed commonly used as keys).Christmas.AddMonths(1)
produces a new DateTime
rather than changing a mutable one. (Another example, if I as a mutable object change my name, what has changed is which name I am using, "Jon" remains immutable and other Jons will be unaffected.return this
. Since the copy can't be changed anyway, pretending something is its own copy is safe.In all, for objects which don't have undergoing change as part of their purpose, there can be many advantages in being immutable. The main disadvantage is in requiring extra constructions, though even here it's often overstated (remember, you have to do several appends before StringBuilder becomes more efficient than the equivalent series of concatenations, with their inherent construction).
It would be a disadvantage if mutability was part of the purpose of an object (who'd want to be modeled by an Employee object whose salary could never ever change) though sometimes even then it can be useful (in a many web and other stateless applications, code doing read operations is separate from that doing updates, and using different objects may be natural - I wouldn't make an object immutable and then force that pattern, but if I already had that pattern I might make my "read" objects immutable for the performance and correctness-guarantee gain).
Copy-on-write is a middle ground. Here the "real" class holds a reference to a "state" class. State classes are shared on copy operations, but if you change the state, a new copy of the state class is created. This is more often used with C++ than C#, which is why it's std:string enjoys some, but not all, of the advantages of immutable types, while remaining mutable.