I have the following problem:
You are given N counters, initially set to 0, and you have two possible operations on them:
A non-empty zero-indexed array A of M integers is given. This array represents consecutive operations:
For example, given integer N = 5 and array A such that:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4
the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2)
The goal is to calculate the value of every counter after all operations.
I did the following solution but it runs at O(NK) where K = length of array A.
public int[] solution(int N, int[] A) {
int[] result = new int[N];
int maximum = 0;
for (int K = 0; K < A.Length; K++)
{
if (A[K] < 1 || A[K] > N + 1)
throw new InvalidOperationException();
if (A[K] >= 1 && A[K] <= N)
{
result[A[K] - 1]++;
if (result[A[K] - 1] > maximum)
{
maximum = result[A[K] - 1];
}
}
else
{
// inefficiency here
for (int i = 0; i < result.Length; i++)
result[i] = maximum;
}
}
return result;
}
Could anyone show me how this can be better done with O(N + K) where K is the length of array A? Sorry for may terrible coding, I am doing these exercises to improve my programming. Thanks!
This is what I came up with, but I am not sure if it works 100%:
public int[] solution(int N, int[] A) {
int[] result = new int[N];
int maximum = 0;
int resetLimit = 0;
for (int K = 0; K < A.Length; K++)
{
if (A[K] < 1 || A[K] > N + 1)
throw new InvalidOperationException();
if (A[K] >= 1 && A[K] <= N)
{
if (result[A[K] - 1] < resetLimit) {
result[A[K] - 1] = resetLimit + 1;
} else {
result[A[K] - 1]++;
}
if (result[A[K] - 1] > maximum)
{
maximum = result[A[K] - 1];
}
}
else
{
// inefficiency here
//for (int i = 0; i < result.Length; i++)
// result[i] = maximum;
resetLimit = maximum;
}
}
for (int i = 0; i < result.Length; i++)
result[i] = Math.Max(resetLimit, result[i]);
return result;
}