How to tell if an IEnumerable<T> is subject to deferred execution?

Simon_Weaver picture Simon_Weaver · Jul 23, 2009 · Viewed 11.4k times · Source

I always assumed that if I was using Select(x=> ...) in the context of LINQ to objects, then the new collection would be immediately created and remain static. I'm not quite sure WHY I assumed this, and its a very bad assumption but I did. I often use .ToList() elsewhere, but often not in this case.

This code demonstrates that even a simple 'Select' is subject to deferred execution :

var random = new Random();
var animals = new[] { "cat", "dog", "mouse" };
var randomNumberOfAnimals = animals.Select(x => Math.Floor(random.NextDouble() * 100) + " " + x + "s");

foreach (var i in randomNumberOfAnimals)
{
    testContextInstance.WriteLine("There are " + i);
}

foreach (var i in randomNumberOfAnimals)
{
    testContextInstance.WriteLine("And now, there are " + i);
}

This outputs the following (the random function is called every time the collection is iterated through):

There are 75 cats
There are 28 dogs
There are 62 mouses
And now, there are 78 cats
And now, there are 69 dogs
And now, there are 43 mouses

I have many places where I have an IEnumerable<T> as a member of a class. Often the results of a LINQ query are assigned to such an IEnumerable<T>. Normally for me, this does not cause issues, but I have recently found a few places in my code where it poses more than just a performance issue.

In trying to check for places where I had made this mistake I thought I could check to see if a particular IEnumerable<T> was of type IQueryable. This I thought would tell me if the collection was 'deferred' or not. It turns out that the enumerator created by the Select operator above is of type System.Linq.Enumerable+WhereSelectArrayIterator``[System.String,System.String] and not IQueryable.

I used Reflector to see what this interface inherited from, and it turns out not to inherit from anything that indicates it is 'LINQ' at all - so there is no way to test based upon the collection type.

I'm quite happy now putting .ToArray() everywhere now, but I'd like to have a mechanism to make sure this problem doesn't happen in future. Visual Studio seems to know how to do it because it gives a message about 'expanding the results view will evaluate the collection.'

The best I have come up with is :

bool deferred = !object.ReferenceEquals(randomNumberOfAnimals.First(),
                                        randomNumberOfAnimals.First());

Edit: This only works if a new object is created with 'Select' and it not a generic solution. I'm not recommended it in any case though! It was a little tongue in the cheek of a solution.

Answer

Bevan picture Bevan · Jul 23, 2009

Deferred execution of LINQ has trapped a lot of people, you're not alone.

The approach I've taken to avoiding this problem is as follows:

Parameters to methods - use IEnumerable<T> unless there's a need for a more specific interface.

Local variables - usually at the point where I create the LINQ, so I'll know whether lazy evaluation is possible.

Class members - never use IEnumerable<T>, always use List<T>. And always make them private.

Properties - use IEnumerable<T>, and convert for storage in the setter.

public IEnumerable<Person> People 
{
    get { return people; }
    set { people = value.ToList(); }
}
private List<People> people;

While there are theoretical cases where this approach wouldn't work, I've not run into one yet, and I've been enthusiasticly using the LINQ extension methods since late Beta.

BTW: I'm curious why you use ToArray(); instead of ToList(); - to me, lists have a much nicer API, and there's (almost) no performance cost.

Update: A couple of commenters have rightly pointed out that arrays have a theoretical performance advantage, so I've amended my statement above to "... there's (almost) no performance cost."

Update 2: I wrote some code to do some micro-benchmarking of the difference in performance between Arrays and Lists. On my laptop, and in my specific benchmark, the difference is around 5ns (that's nanoseconds) per access. I guess there are cases where saving 5ns per loop would be worthwhile ... but I've never come across one. I had to hike my test up to 100 million iterations before the runtime became long enough to accurately measure.