How to program a neural network for chess?

caw picture caw · Apr 16, 2009 · Viewed 32.2k times · Source

I want to program a chess engine which learns to make good moves and win against other players. I've already coded a representation of the chess board and a function which outputs all possible moves. So I only need an evaluation function which says how good a given situation of the board is. Therefore, I would like to use an artificial neural network which should then evaluate a given position. The output should be a numerical value. The higher the value is, the better is the position for the white player.

My approach is to build a network of 385 neurons: There are six unique chess pieces and 64 fields on the board. So for every field we take 6 neurons (1 for every piece). If there is a white piece, the input value is 1. If there is a black piece, the value is -1. And if there is no piece of that sort on that field, the value is 0. In addition to that there should be 1 neuron for the player to move. If it is White's turn, the input value is 1 and if it's Black's turn, the value is -1.

I think that configuration of the neural network is quite good. But the main part is missing: How can I implement this neural network into a coding language (e.g. Delphi)? I think the weights for each neuron should be the same in the beginning. Depending on the result of a match, the weights should then be adjusted. But how? I think I should let 2 computer players (both using my engine) play against each other. If White wins, Black gets the feedback that its weights aren't good.

So it would be great if you could help me implementing the neural network into a coding language (best would be Delphi, otherwise pseudo-code). Thanks in advance!

Answer

siemanko picture siemanko · Jul 25, 2016

In case somebody randomly finds this page. Given what we know now, what the OP proposes is almost certainly possible. In fact we managed to do it for a game with much larger state space - Go ( https://deepmind.com/research/case-studies/alphago-the-story-so-far ).