I have been mostly a Table functions user in mathematica. However I have noticed that in several examples where I used Array instead of Table to express the same result, it ran markedly faster, especially as the dimension of table grew larger.
So my question is this: When speed of execution is the primary concern, when is it most appropriate to use table?
What explains this difference?
My guess is that because Arrays assume a functional relationship between the items in the list, it stores them more efficiently, therefore use less memory, thus facilitating storage and subsequent processing?
Is it what is going on?
Array
has no performance advantages over Table
. There are differences between them which make one preferred over another.
Table
is slower on multi-dimensional arrays. All of them used variable to hold the table size. Table
has HoldAll
attributes and only auto-evaluates outer-most interation bound. Because internal iterators remain unevaluated, the element of the table fails to compile. Using explicit numbers or With
with result in auto-compilation:
In[2]:= With[{b = 10^4, c = 10^4},
{Timing@(#[[1, 1]] &[ar = Array[(# + #2) &, {b, c}]]) ,
Timing@(#[[1, 1]] &[ta = Table[(i + j), {i, b}, {j, c}]])}
]
Out[2]= {{4.93, 2}, {4.742, 2}}
In[3]:= Attributes[Table]
Out[3]= {HoldAll, Protected}
Array
allows you to build an array of function values just as much as the Table
. They take different arguments. Array
takes a function:
In[34]:= Array[Function[{i, j}, a[i, j]], {3, 3}]
Out[34]= {{a[1, 1], a[1, 2], a[1, 3]}, {a[2, 1], a[2, 2],
a[2, 3]}, {a[3, 1], a[3, 2], a[3, 3]}}
while table takes an explicit form:
In[35]:= Table[a[i, j], {i, 3}, {j, 3}]
Out[35]= {{a[1, 1], a[1, 2], a[1, 3]}, {a[2, 1], a[2, 2],
a[2, 3]}, {a[3, 1], a[3, 2], a[3, 3]}}
Array
can only go over regular arrays, while Table
can do arbitrary iterating over list:
In[36]:= Table[a[i, j], {i, {2, 3, 5, 7, 11}}, {j, {13, 17, 19}}]
Out[36]= {{a[2, 13], a[2, 17], a[2, 19]}, {a[3, 13], a[3, 17],
a[3, 19]}, {a[5, 13], a[5, 17], a[5, 19]}, {a[7, 13], a[7, 17],
a[7, 19]}, {a[11, 13], a[11, 17], a[11, 19]}}
Sometimes Array
can be more succinct. Compare multiplication table:
In[37]:= Array[Times, {5, 5}]
Out[37]= {{1, 2, 3, 4, 5}, {2, 4, 6, 8, 10}, {3, 6, 9, 12, 15}, {4, 8,
12, 16, 20}, {5, 10, 15, 20, 25}}
versus
In[38]:= Table[i j, {i, 5}, {j, 5}]
Out[38]= {{1, 2, 3, 4, 5}, {2, 4, 6, 8, 10}, {3, 6, 9, 12, 15}, {4, 8,
12, 16, 20}, {5, 10, 15, 20, 25}}
Array
allows one to build expression with any head, not just list:
In[39]:= Array[a, {3, 3}, {1, 1}, h]
Out[39]= h[h[a[1, 1], a[1, 2], a[1, 3]], h[a[2, 1], a[2, 2], a[2, 3]],
h[a[3, 1], a[3, 2], a[3, 3]]]
By default the head h
is chosen to be List
resulting in creation of the regular array. Table does not have this flexibility.