A Spark DataFrame contains a column of type Array[Double]. It throw a ClassCastException exception when I try to get it back in a map() function. The following Scala code generate an exception.
case class Dummy( x:Array[Double] )
val df = sqlContext.createDataFrame(Seq(Dummy(Array(1,2,3))))
val s = df.map( r => {
val arr:Array[Double] = r.getAs[Array[Double]]("x")
arr.sum
})
s.foreach(println)
The exception is
java.lang.ClassCastException: scala.collection.mutable.WrappedArray$ofRef cannot be cast to [D
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:24)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:23)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:890)
at org.apache.spark.rdd.RDD$$anonfun$foreach$1$$anonfun$apply$28.apply(RDD.scala:890)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1848)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1848)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Cam somebody explain me why it does not work? what should I do instead? I am using Spark 1.5.1 and scala 2.10.6
Thanks
ArrayType
is represented in a Row
as a scala.collection.mutable.WrappedArray
. You can extract it using for example
val arr: Seq[Double] = r.getAs[Seq[Double]]("x")
or
val i: Int = ???
val arr = r.getSeq[Double](i)
or even:
import scala.collection.mutable.WrappedArray
val arr: WrappedArray[Double] = r.getAs[WrappedArray[Double]]("x")
If DataFrame
is relatively thin then pattern matching could be a better approach:
import org.apache.spark.sql.Row
df.rdd.map{case Row(x: Seq[Double]) => (x.toArray, x.sum)}
although you have to keep in mind that the type of the sequence is unchecked.
In Spark >= 1.6 you can also use Dataset
as follows:
df.select("x").as[Seq[Double]].rdd