Given an array of Integers, and a range (low, high), find all contiguous subsequence in the array which have sum in the range.
Is there a solution better than O(n^2)?
I tried a lot but couldn't find a solution that does better than O(n^2). Please help me find a better solution or confirm that this is the best we can do.
This is what I have right now, I'm assuming the range to be defined as [lo, hi]
.
public static int numOfCombinations(final int[] data, final int lo, final int hi, int beg, int end) {
int count = 0, sum = data[beg];
while (beg < data.length && end < data.length) {
if (sum > hi) {
break;
} else {
if (lo <= sum && sum <= hi) {
System.out.println("Range found: [" + beg + ", " + end + "]");
++count;
}
++end;
if (end < data.length) {
sum += data[end];
}
}
}
return count;
}
public static int numOfCombinations(final int[] data, final int lo, final int hi) {
int count = 0;
for (int i = 0; i < data.length; ++i) {
count += numOfCombinations(data, lo, hi, i, i);
}
return count;
}
O(n) time solution:
You can extend the 'two pointer' idea for the 'exact' version of the problem. We will maintain variables a
and b
such that all intervals on the form xs[i,a), xs[i,a+1), ..., xs[i,b-1)
have a sum in the sought after range [lo, hi]
.
a, b = 0, 0
for i in range(n):
while a != (n+1) and sum(xs[i:a]) < lo:
a += 1
while b != (n+1) and sum(xs[i:b]) <= hi:
b += 1
for j in range(a, b):
print(xs[i:j])
This is actually O(n^2)
because of the sum
, but we can easily fix that by first calculating the prefix sums ps
such that ps[i] = sum(xs[:i])
. Then sum(xs[i:j])
is simply ps[j]-ps[i]
.
Here is an example of running the above code on [2, 5, 1, 1, 2, 2, 3, 4, 8, 2]
with [lo, hi] = [3, 6]
:
[5]
[5, 1]
[1, 1, 2]
[1, 1, 2, 2]
[1, 2]
[1, 2, 2]
[2, 2]
[2, 3]
[3]
[4]
This runs in time O(n + t)
, where t
is the size of the output. As some have noticed, the output can be as large as t = n^2
, namely if all contiguous subsequences are matched.
If we allow writing the output in a compressed format (output pairs a,b
of which all subsequences are contiguous) we can get a pure O(n)
time algorithm.