I know how to read a csv file into spark using spark-csv (https://github.com/databricks/spark-csv), but I already have the csv file represented as a string and would like to convert this string directly to dataframe. Is this possible?
Update : Starting from Spark 2.2.x there is finally a proper way to do it using Dataset.
import org.apache.spark.sql.{Dataset, SparkSession}
val spark = SparkSession.builder().appName("CsvExample").master("local").getOrCreate()
import spark.implicits._
val csvData: Dataset[String] = spark.sparkContext.parallelize(
"""
|id, date, timedump
|1, "2014/01/01 23:00:01",1499959917383
|2, "2014/11/31 12:40:32",1198138008843
""".stripMargin.lines.toList).toDS()
val frame = spark.read.option("header", true).option("inferSchema",true).csv(csvData)
frame.show()
frame.printSchema()
Old spark versions
Actually you can, though it's using library internals and not widely advertised. Just create and use your own CsvParser instance. Example that works for me on spark 1.6.0 and spark-csv_2.10-1.4.0 below
import com.databricks.spark.csv.CsvParser
val csvData = """
|userid,organizationid,userfirstname,usermiddlename,userlastname,usertitle
|1,1,user1,m1,l1,mr
|2,2,user2,m2,l2,mr
|3,3,user3,m3,l3,mr
|""".stripMargin
val rdd = sc.parallelize(csvData.lines.toList)
val csvParser = new CsvParser()
.withUseHeader(true)
.withInferSchema(true)
val csvDataFrame: DataFrame = csvParser.csvRdd(sqlContext, rdd)