Consider I have a defined schema for loading 10 csv files in a folder. Is there a way to automatically load tables using Spark SQL. I know this can be performed by using an individual dataframe for each file [given below], but can it be automated with a single command rather than pointing a file can I point a folder?
df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true")
.load("../Downloads/2008.csv")
Use wildcard, e.g. replace 2008
with *
:
df = sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true")
.load("../Downloads/*.csv") // <-- note the star (*)
// these lines are equivalent in Spark 2.0
spark.read.format("csv").option("header", "true").load("../Downloads/*.csv")
spark.read.option("header", "true").csv("../Downloads/*.csv")
Notes:
Replace format("com.databricks.spark.csv")
by using format("csv")
or csv
method instead. com.databricks.spark.csv
format has been integrated to 2.0.
Use spark
not sqlContext