Why does Spark job fail with "Exit code: 52"

Virgil picture Virgil · Feb 17, 2016 · Viewed 15.3k times · Source

I have had Spark job failing with a trace like this one:

./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-Container id: container_1455622885057_0016_01_000008
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-Exit code: 52
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr:Stack trace: ExitCodeException exitCode=52: 
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at org.apache.hadoop.util.Shell.runCommand(Shell.java:545)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at org.apache.hadoop.util.Shell.run(Shell.java:456)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:722)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at java.util.concurrent.FutureTask.run(FutureTask.java:262)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-      at java.lang.Thread.run(Thread.java:745)
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-
./containers/application_1455622885057_0016/container_1455622885057_0016_01_000001/stderr-Container exited with a non-zero exit code 52

It took me a while to figure out what "exit code 52" means, so I'm putting this up here for the benefit of others who might be searching

Answer

Virgil picture Virgil · Feb 17, 2016

The exit code 52 comes from org.apache.spark.util.SparkExitCode, and it is val OOM=52 - i.e. an OutOfMemoryError. Which makes sense since I also find this in the container logs:

16/02/16 17:09:59 ERROR executor.Executor: Managed memory leak detected; size = 4823704883 bytes, TID = 3226
16/02/16 17:09:59 ERROR executor.Executor: Exception in task 26.0 in stage 2.0 (TID 3226)
java.lang.OutOfMemoryError: Unable to acquire 1248 bytes of memory, got 0
        at org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:120)
        at org.apache.spark.shuffle.sort.ShuffleExternalSorter.acquireNewPageIfNecessary(ShuffleExternalSorter.java:354)
        at org.apache.spark.shuffle.sort.ShuffleExternalSorter.insertRecord(ShuffleExternalSorter.java:375)
        at org.apache.spark.shuffle.sort.UnsafeShuffleWriter.insertRecordIntoSorter(UnsafeShuffleWriter.java:237)
        at org.apache.spark.shuffle.sort.UnsafeShuffleWriter.write(UnsafeShuffleWriter.java:164)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
        at org.apache.spark.scheduler.Task.run(Task.scala:89)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)

(note that I'm not really sure at this point if the problem is in my code or due to the Tungsten memory leaks, but that's a different issue)