System: Spark 1.3.0 (Anaconda Python dist.) on Cloudera Quickstart VM 5.4
Here's a Spark DataFrame:
from pyspark.sql import SQLContext
from pyspark.sql.types import *
sqlContext = SQLContext(sc)
data = sc.parallelize([('Foo',41,'US',3),
('Foo',39,'UK',1),
('Bar',57,'CA',2),
('Bar',72,'CA',3),
('Baz',22,'US',6),
(None,75,None,7)])
schema = StructType([StructField('Name', StringType(), True),
StructField('Age', IntegerType(), True),
StructField('Country', StringType(), True),
StructField('Score', IntegerType(), True)])
df = sqlContext.createDataFrame(data,schema)
data.show()
Name Age Country Score
Foo 41 US 3
Foo 39 UK 1
Bar 57 CA 2
Bar 72 CA 3
Baz 22 US 6
null 75 null 7
However neither of these work!
df.dropna()
df.na.drop()
I get this message:
>>> df.show()
Name Age Country Score
Foo 41 US 3
Foo 39 UK 1
Bar 57 CA 2
Bar 72 CA 3
Baz 22 US 6
null 75 null 7
>>> df.dropna().show()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/spark/python/pyspark/sql/dataframe.py", line 580, in __getattr__
jc = self._jdf.apply(name)
File "/usr/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", line 538, in __call__
File "/usr/lib/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", line 300, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o50.apply.
: org.apache.spark.sql.AnalysisException: Cannot resolve column name "dropna" among (Name, Age, Country, Score);
at org.apache.spark.sql.DataFrame$$anonfun$resolve$1.apply(DataFrame.scala:162)
at org.apache.spark.sql.DataFrame$$anonfun$resolve$1.apply(DataFrame.scala:162)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.DataFrame.resolve(DataFrame.scala:161)
at org.apache.spark.sql.DataFrame.col(DataFrame.scala:436)
at org.apache.spark.sql.DataFrame.apply(DataFrame.scala:426)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:207)
at java.lang.Thread.run(Thread.java:745)
Has anybody else experienced this problem? What's the workaround? Pyspark seems to thing that I am looking for a column called "na". Any help would be appreciated!
tl;dr The methods na
and dropna
are only available since Spark 1.3.1.
Few mistakes you made:
data = sc.parallelize([....('',75,'', 7 )])
, you intended to use ''
to represent None
, however, it's just a String instead of null
na
and dropna
are both methods on dataFrame class, therefore, you should call it with your df
.
Runnable Code:
data = sc.parallelize([('Foo',41,'US',3),
('Foo',39,'UK',1),
('Bar',57,'CA',2),
('Bar',72,'CA',3),
('Baz',22,'US',6),
(None, 75, None, 7)])
schema = StructType([StructField('Name', StringType(), True),
StructField('Age', IntegerType(), True),
StructField('Country', StringType(), True),
StructField('Score', IntegerType(), True)])
df = sqlContext.createDataFrame(data,schema)
df.dropna().show()
df.na.drop().show()