I am trying to implement KMeans using Apache Spark
.
val data = sc.textFile(irisDatasetString)
val parsedData = data.map(_.split(',').map(_.toDouble)).cache()
val clusters = KMeans.train(parsedData,3,numIterations = 20)
on which I get the following error :
error: overloaded method value train with alternatives:
(data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int,runs: Int)org.apache.spark.mllib.clustering.KMeansModel <and>
(data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int)org.apache.spark.mllib.clustering.KMeansModel <and>
(data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int,runs: Int,initializationMode: String)org.apache.spark.mllib.clustering.KMeansModel
cannot be applied to (org.apache.spark.rdd.RDD[Array[Double]], Int, numIterations: Int)
val clusters = KMeans.train(parsedData,3,numIterations = 20)
so I tried converting Array[Double] to Vector as shown here
scala> val vectorData: Vector = Vectors.dense(parsedData)
on which I got the following error :
error: type Vector takes type parameters
val vectorData: Vector = Vectors.dense(parsedData)
^
error: overloaded method value dense with alternatives:
(values: Array[Double])org.apache.spark.mllib.linalg.Vector <and>
(firstValue: Double,otherValues: Double*)org.apache.spark.mllib.linalg.Vector
cannot be applied to (org.apache.spark.rdd.RDD[Array[Double]])
val vectorData: Vector = Vectors.dense(parsedData)
So I am inferring that org.apache.spark.rdd.RDD[Array[Double]]
is not the same as Array[Double]
How can I proceed with my data as org.apache.spark.rdd.RDD[Array[Double]]
? or how can I convert org.apache.spark.rdd.RDD[Array[Double]] to Array[Double]
?
KMeans.train
is expecting RDD[Vector]
instead of RDD[Array[Double]]
. It seems to me that all you need to do is change
val parsedData = data.map(_.split(',').map(_.toDouble)).cache()
to
val parsedData = data.map(x => Vectors.dense(x.split(',').map(_.toDouble))).cache()