I am wondering how to convert comma-delimited values into rows in Redshift. I am afraid that my own solution isn't optimal. Please advise. I have table with one of the columns with coma-separated values. For example:
I have:
user_id|user_name|user_action
-----------------------------
1 | Shone | start,stop,cancell...
I would like to see
user_id|user_name|parsed_action
-------------------------------
1 | Shone | start
1 | Shone | stop
1 | Shone | cancell
....
A slight improvement over the existing answer is to use a second "numbers" table that enumerates all of the possible list lengths and then use a cross join
to make the query more compact.
Redshift does not have a straightforward method for creating a numbers table that I am aware of, but we can use a bit of a hack from https://www.periscope.io/blog/generate-series-in-redshift-and-mysql.html to create one using row numbers.
Specifically, if we assume the number of rows in cmd_logs
is larger than the maximum number of commas in the user_action
column, we can create a numbers table by counting rows. To start, let's assume there are at most 99 commas in the user_action
column:
select
(row_number() over (order by true))::int as n
into numbers
from cmd_logs
limit 100;
If we want to get fancy, we can compute the number of commas from the cmd_logs
table to create a more precise set of rows in numbers
:
select
n::int
into numbers
from
(select
row_number() over (order by true) as n
from cmd_logs)
cross join
(select
max(regexp_count(user_action, '[,]')) as max_num
from cmd_logs)
where
n <= max_num + 1;
Once there is a numbers
table, we can do:
select
user_id,
user_name,
split_part(user_action,',',n) as parsed_action
from
cmd_logs
cross join
numbers
where
split_part(user_action,',',n) is not null
and split_part(user_action,',',n) != '';