I was trying to find the longest palindrome in a string. The brute force solution takes O(n^3) time. I read that there is a linear time algorithm for it using suffix trees. I am familiar with suffix trees and am comfortable building them. How do you use the built suffix tree to find the longest palindrome.
The Linear solution can be found in this Way ::
Prequisities:
(1).You must know how to construct the suffix array in O(N) or O(NlogN) time.
(2).You must know how to find the standard LCP Array ie. LCP between adjacent Suffixes i and i-1
ie . LCP [i]=LCP(suffix i in sorted array, suffix i-1 in sorted array) for (i>0).
Let S be the Original String and S' be the reverse of Original String. Lets take S="banana" as an example. Then its Reverse string S'=ananab.
Step 1: Concatenate S + # + S' to get String Str ,where # is an alphabet not present in original String.
Concatenated String Str=S+#+S'
Str="banana#ananab"
Step 2: Now construct the Suffix Array of the string Str.
In this example ,the suffix array is:
Suffix Number Index Sorted Suffix
0 6 #ananab
1 5 a#ananab
2 11 ab
3 3 ana#ananab
4 9 anab
5 1 anana#ananab
6 7 ananab
7 12 b
8 0 banana#ananab
9 4 na#ananab
10 10 nab
11 2 nana#ananab
12 8 nanab
Please Note that a suffix array is an array of integers giving the starting positions of suffixes of a string in lexicographical order.So the Array that holds Index of starting position is a suffix Array.
That is SuffixArray[]={6,5,11,3,9,1,7,12,0,4,10,2,8};
Step 3: As you had managed to construct the Suffix Array ,Now find the Longest Common Prefixes Between the adjacent suffixes.
LCP between #ananab a#ananab is :=0
LCP between a#ananab ab is :=1
LCP between ab ana#ananab is :=1
LCP between ana#ananab anab is :=3
LCP between anab anana#ananab is :=3
LCP between anana#ananab ananab is :=5
LCP between ananab b is :=0
LCP between b banana#ananab is :=1
LCP between banana#ananab na#ananab is :=0
LCP between na#ananab nab is :=2
LCP between nab nana#ananab is :=2
LCP between nana#ananab nanab is :=4
Thus LCP array LCP={0,0,1,1,3,3,5,0,1,0,2,2,4}.
Where LCP[i]=Length of Longest Common Prefix between Suffix i and suffix (i-1). (for i>0)
Step 4:
Now you have constructed a LCP array ,Use the following Logic.
Let the length of the Longest Palindrome ,longestlength:=0 (Initially)
Let Position:=0.
for(int i=1;i<Len;++i)
{
//Note that Len=Length of Original String +"#"+ Reverse String
if((LCP[i]>longestlength))
{
//Note Actual Len=Length of original Input string .
if((suffixArray[i-1]<actuallen && suffixArray[i]>actuallen)||(suffixArray[i]<actuallen && suffixArray[i-1]>actuallen))
{
//print :Calculating Longest Prefixes b/w suffixArray[i-1] AND suffixArray[i]
longestlength=LCP[i];
//print The Longest Prefix b/w them is ..
//print The Length is :longestlength:=LCP[i];
Position=suffixArray[i];
}
}
}
So the length of Longest Palindrome :=longestlength;
and the longest palindrome is:=Str[position,position+longestlength-1];
Execution Example ::
actuallen=Length of banana:=6
Len=Length of "banana#ananab" :=13.
Calculating Longest Prefixes b/w a#ananab AND ab
The Longest Prefix b/w them is :a
The Length is :longestlength:= 1
Position:= 11
Calculating Longest Prefixes b/w ana#ananab AND anab
The Longest Prefix b/w them is :ana
The Length is :longestlength:= 3
Position:=9
Calculating Longest Prefixes b/w anana#ananab AND ananab
The Longest Prefix b/w them is :anana
The Length is :longestlength:= 5
Position:= 7
So Answer =5.
And the Longest Palindrome is :=Str[7,7+5-1]=anana
Just Make a Note ::
The if condition in Step 4 basically refers that ,in each iteration(i) ,if I take the suffixes s1(i) and s2(i-1) then ,"s1 must contains # and s2 must not contain # " OR "s2 must contains # and s1 must not contains # ".
|(1:BANANA#ANANAB)|leaf
tree:|
| | | |(7:#ANANAB)|leaf
| | |(5:NA)|
| | | |(13:B)|leaf
| |(3:NA)|
| | |(7:#ANANAB)|leaf
| | |
| | |(13:B)|leaf
|(2:A)|
| |(7:#ANANAB)|leaf
| |
| |(13:B)|leaf
|
| | |(7:#ANANAB)|leaf
| |(5:NA)|
| | |(13:B)|leaf
|(3:NA)|
| |(7:#ANANAB)|leaf
| |
| |(13:B)|leaf
|
|(7:#ANANAB)|leaf