E.g.: Array: 4,3,0,1,5 {Assume all digits are >=0. Also each element in array correspond to a digit. i.e. each element on the array is between 0 and 9. }
In the above array, the largest number is: 5430 {using digits 5, 4, 3 and 0 from the array}
My Approach:
For divisibility by 3, we need the sum of digits to be divisible by 3. So,
So, the main step is STEP-3 i.e. How to find the subset such that it contains MAXIMUM possible number of elements such that their sum is MAX and is divisible by 3 .
I was thinking, maybe Step-3 could be done by GREEDY CHOICE of taking all the elements and keep on removing the smallest element in the set till the sum is divisible by 3.
But i am not convinced that this GREEDY choice will work.
Please tell if my approach is correct. If it is, then please suggest as to how to do Step-3 ?
Also, please suggest any other possible/efficient algorithm.
Observation: If you can get a number that is divisible by 3, you need to remove at most 2 numbers, to maintain optimal solution.
A simple O(n^2)
solution will be to check all possibilities to remove 1 number, and if none is valid, check all pairs (There are O(n^2)
of those).
EDIT:
O(n)
solution: Create 3 buckets - bucket1
, bucket2
, bucket0
. Each will denote the modulus 3 value of the numbers. Ignore bucket0
in the next algorithm.
Let the sum of the array be sum
.
If sum % 3 ==0: we are done.
else if sum % 3 == 1:
if there is a number in bucket1 - chose the minimal
else: take 2 minimals from bucket 2
else if sum % 3 == 2
if there is a number in bucket2 - chose the minimal
else: take 2 minimals from bucket1
Note: You don't actually need the bucket, to achieve O(1)
space - you need only the 2 minimal values from bucket1
and bucket2
, since it is the only number we actually used from these buckets.
Example:
arr = { 3, 4, 0, 1, 5 }
bucket0 = {3,0} ; bucket1 = {4,1} bucket2 = { 5 }
sum = 13 ; sum %3 = 1
bucket1 is not empty - chose minimal from it (1), and remove it from the array.
result array = { 3, 4, 0, 5 }
proceed to STEP 4 "as planned"